1. (15 points) DC load line.

For the circuit below, determine the dc load line equation for the BJT, incorporating β. That is, do not assume that $I_{E} \simeq I_{C}$. Take $R_{C}=R_{E}=R_{L}=5 K \Omega, V_{C C}=12$, $V_{D D}=-5 V$, and $\beta=100$.

2. (35 points) CE Amplifier.

The Common-emitter amplifier circuit shown below is to be designed to amplify a 12 mV sinusoidal signal from a microphone to 0.4 V sinusoidal output signal. Take $r_{e}^{\prime}=125 \Omega$, and $R_{E 2}=20 K \Omega, \beta_{D C}=100$, and $\beta_{a c}=110$

1. (10 points) Find R_{C} and $R_{E 1}$.
2. (10 points) Draw the small signal ac model for the amplifier. Find $R_{\text {in(base) }}, R_{\text {in(tot) })}$, and the overall voltage gain v_{s} / v_{0} of the amplifier.
3. (5 points) Draw the ac collector voltage.
4. (5 points) We add a coupling capacitor to the output of the amplifier. Draw the source and the output ac voltages.
5. (5 points) Assume now that the bypass capacitor is removed. Compare the new overall voltage gain to the previous one.
6. (20 points) PNP transistor and variations of temperature.

For the circuit shown below. Assume $\beta_{D C}=50$. The $V_{E B}$ is 0.7 V at $25^{\circ} \mathrm{C}$ and decreases 2.5 mV per degree Celsius increase in temperature. At a temperature $T^{\circ} \mathrm{C}>25^{\circ} \mathrm{C}$, the collector current is 6.14 mA . Find T. (Neglect any change in $\beta_{D C}$.)

4. (30 points) Voltage divider.

For the voltage divider bias circuit shown below, assume that the current gain is $\beta_{D C}=$ 120.

1. (15 points) Design the circuit such that $I_{C Q}=0.15 \mathrm{~mA}$ and $R_{T H}=200 \mathrm{~K} \Omega$.
2. (15 points) Due to an intense increase in temperature, the current gain doubles. Determine the percentage change in the value of $V_{C E Q}$.

Bonus (20 points)

Consider the following multi-stage transistor circuit. Take $\beta=100$.

Calculate the dc voltages at each node and the dc currents through the resistors.

